Math 202- Quiz 1

March 21, 2009

- The duration of the test is 1 hour
- No calculators are allowed
- Fit all your answers on the question sheet

NAME:

SECTION:

1. (15 points) Solve the given initial value problem

$$
y^{\prime}=\frac{1+3 x^{2}}{3 y^{2}-6 y} \quad y(1)=0
$$

and determine the interval in which the solution is valid.
2. (15 points) Express the solution $\mathrm{y}(\mathrm{x})$ of the initial-value problem $x^{3} y^{\prime}+2 x^{2} y=10 \sin x, y(1)=$ 0 in terms of $\operatorname{Si}(\mathrm{x})$ where

$$
S i(x)=\int_{0}^{x} \frac{\sin t}{t} d t
$$

where the integrand is defined to be 1 at $t=0$.
3. (10 points) Solve the given differential equation

$$
y^{\prime}=\frac{4 y-3 x}{2 x-y}
$$

4. (15 points) Solve the differential equation by finding the appropriate integrating factor.

$$
6 x y d x+\left(4 y+9 x^{2}\right) d y=0
$$

5. (15 points) Solve the following differential equation

$$
t^{2} \frac{d y}{d t}+2 t y-y^{3}=0, \quad t>0
$$

6. (10 points) Calculate the surface integral $\iint_{S} y d S$, where S is the portion of the graph of $z=x+y^{2}$ where $0 \leq x \leq y \leq 1$.
7. (10 points) Use Stoke's theorem to compute $I=\int_{C} F . d s$, where

$$
F=\sin x^{2} i+\left(e^{y^{2}}+x^{2}\right) j+\left(z^{4}+2 x^{2}\right) k
$$

and C is the boundary of the triangle in the first octant cut by the plane $\frac{x}{3}+\frac{y}{2}+z=1$ traversed counterclockwise.
8. (10 points) Compute the outward flux of $F=x y i+\left(y^{2}+e^{x z^{2}}\right) j+\sin (x y) k$ over the surface of the region bounded by the parabolic cylinder $z=1-x^{2}$ and the planes $z=0, y=0$ and $y+z=2$.

